Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Miocene (∼23–5 Ma) is a past warm epoch when global surface temperatures varied between ∼5 and 8°C warmer than today, and CO2concentration was ∼400–800 ppm. The narrowing/closing of the tropical ocean gateways and widening of high‐latitude gateways throughout the Miocene is likely responsible for the evolution of the ocean's overturning circulation to its modern structure, though the mechanisms remain unclear. Here, we investigate early and middle Miocene ocean circulation in an opportunistic climate model intercomparison (MioMIP1), using 14 simulations with different paleogeography, CO2, and vegetation. The strength of the Southern Ocean‐driven Meridional Overturning Circulation (SOMOC) bottom cell is similar in the Miocene and Pre‐Industrial (PI) but dominates the Miocene global MOC due to weaker Northern Hemisphere overturning. The Miocene Atlantic MOC (AMOC) is weaker than PI in all the simulations (by 2–21 Sv), possibly due to its connection with an Arctic that is considerably fresher than today. Deep overturning in the North Pacific (PMOC) is present in three simulations (∼5–10 Sv), of which two have a weaker AMOC, and one has a stronger AMOC (compared to its PMOC). Surface freshwater fluxes control northern overturning such that the basin with the least freshwater gain has stronger overturning. While the orography, which impacts runoff direction (Pacific vs. Atlantic), has an inconsistent impact on northern overturning across simulations, overall, features associated with the early Miocene—such as a lower Tibetan Plateau, the Rocky Mountains, and a deeper Panama Seaway—seem to favor PMOC over AMOC.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth’s past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near‐surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near‐surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near‐surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near‐surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.more » « less
-
Abstract Despite tectonic conditions and atmospheric CO 2 levels ( pCO 2 ) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO 2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO 2 . Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO 2 forcing.more » « less
-
null (Ed.)Abstract. Palaeoclimate simulations improve our understanding ofthe climate, inform us about the performance of climate models in adifferent climate scenario, and help to identify robust features of theclimate system. Here, we analyse Arctic warming in an ensemble of 16simulations of the mid-Pliocene Warm Period (mPWP), derived from thePliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90∘ N) annual meansurface air temperature (SAT) increases of 3.7 to 11.6 ∘Ccompared to the pre-industrial period, with a multi-model mean (MMM) increase of7.2 ∘C. The Arctic warming amplification ratio relative to globalSAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea iceextent anomalies range from −3.0 to -10.4×106 km2, with a MMManomaly of -5.6×106 km2, which constitutes a decrease of 53 %compared to the pre-industrial period. The majority (11 out of 16) of models simulatesummer sea-ice-free conditions (≤1×106 km2) in their mPWPsimulation. The ensemble tends to underestimate SAT in the Arctic whencompared to available reconstructions, although the degree of underestimationvaries strongly between the simulations. The simulations with the highestArctic SAT anomalies tend to match the proxy dataset in its current formbetter. The ensemble shows some agreement with reconstructions of sea ice,particularly with regard to seasonal sea ice. Large uncertainties limit theconfidence that can be placed in the findings and the compatibility of thedifferent proxy datasets. We show that while reducing uncertainties in thereconstructions could decrease the SAT data–model discord substantially,further improvements are likely to be found in enhanced boundary conditionsor model physics. Lastly, we compare the Arctic warming in the mPWP toprojections of future Arctic warming and find that the PlioMIP2 ensemblesimulates greater Arctic amplification than CMIP5 future climate simulationsand an increase instead of a decrease in Atlantic Meridional OverturningCirculation (AMOC) strength compared topre-industrial period. The results highlight the importance of slow feedbacks inequilibrium climate simulations, and that caution must be taken when usingsimulations of the mPWP as an analogue for future climate change.more » « less
-
null (Ed.)Abstract. The Pliocene epoch has great potential to improve ourunderstanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts permillion by volume. Here we present the large-scale features of Plioceneclimate as simulated by a new ensemble of climate models of varyingcomplexity and spatial resolution based on new reconstructions ofboundary conditions (the Pliocene Model Intercomparison Project Phase 2;PlioMIP2). As a global annual average, modelled surface air temperaturesincrease by between 1.7 and 5.2 ∘C relative to the pre-industrial erawith a multi-model mean value of 3.2 ∘C. Annual mean totalprecipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.more » « less
An official website of the United States government
